Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The catalytic mechanism of the glutathione-dependent dehydroascorbate reductase activity of thioltransferase (glutaredoxin).

Identifieur interne : 001088 ( Main/Exploration ); précédent : 001087; suivant : 001089

The catalytic mechanism of the glutathione-dependent dehydroascorbate reductase activity of thioltransferase (glutaredoxin).

Auteurs : M P Washburn [États-Unis] ; W W Wells

Source :

RBID : pubmed:9890907

Descripteurs français

English descriptors

Abstract

The catalytic mechanism of the glutathione (GSH)-dependent dehydroascorbic acid (DHA) reductase activity of recombinant pig liver thioltransferase (RPLTT) was investigated. RPLTT and the C25S mutant protein had equivalent specificity constants (kcat/Km) for both DHA and GSH. Iodoacetamide (IAM) inactivated the DHA reductase activities of RPLTT and C25S, confirming the essential role of cysteine in the reaction mechanism. When preincubated with DHA, RPLTT but not C25S was protected against IAM inactivation, suggesting that RPLTT has the ability to chemically reduce DHA forming ascorbic acid (AA) and the intramolecular disulfide form of the enzyme. Electrochemical detection of AA demonstrated the ability of both reduced RPLTT and C25S to chemically reduce DHA to AA in the absence of GSH. However, RPLTT had an initial rate of DHA reduction which was 4-fold greater than that of C25S, and after 10 min, RPLTT resulted in an AA concentration 11-fold greater than that of C25S. Isoelectric focusing analysis revealed that the product of reaction of reduced RPLTT but not C25S with DHA was consistent with the oxidized form of the enzyme. This result suggested that even though both RPLTT and the C25S mutant had equivalent specificity constants for DHA and GSH, they may have different catalytic mechanisms. On the basis of the experimental results, a catalytic mechanism for the DHA reductase activity of RPLTT is proposed. This is the first description of a catalytic mechanism of a glutathione:dehydroascorbate oxidoreductase (EC 1.8.5.1).

DOI: 10.1021/bi980480v
PubMed: 9890907


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The catalytic mechanism of the glutathione-dependent dehydroascorbate reductase activity of thioltransferase (glutaredoxin).</title>
<author>
<name sortKey="Washburn, M P" sort="Washburn, M P" uniqKey="Washburn M" first="M P" last="Washburn">M P Washburn</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Michigan State University, East Lansing 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, Michigan State University, East Lansing 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wells, W W" sort="Wells, W W" uniqKey="Wells W" first="W W" last="Wells">W W Wells</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1999">1999</date>
<idno type="RBID">pubmed:9890907</idno>
<idno type="pmid">9890907</idno>
<idno type="doi">10.1021/bi980480v</idno>
<idno type="wicri:Area/Main/Corpus">001119</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001119</idno>
<idno type="wicri:Area/Main/Curation">001119</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001119</idno>
<idno type="wicri:Area/Main/Exploration">001119</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The catalytic mechanism of the glutathione-dependent dehydroascorbate reductase activity of thioltransferase (glutaredoxin).</title>
<author>
<name sortKey="Washburn, M P" sort="Washburn, M P" uniqKey="Washburn M" first="M P" last="Washburn">M P Washburn</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Michigan State University, East Lansing 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, Michigan State University, East Lansing 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wells, W W" sort="Wells, W W" uniqKey="Wells W" first="W W" last="Wells">W W Wells</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="1999" type="published">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Ascorbic Acid (metabolism)</term>
<term>Catalysis (MeSH)</term>
<term>Cysteine (genetics)</term>
<term>Dehydroascorbic Acid (metabolism)</term>
<term>Enzyme Activation (genetics)</term>
<term>Enzyme Inhibitors (pharmacology)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Iodoacetamide (pharmacology)</term>
<term>Isoelectric Focusing (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Liver (enzymology)</term>
<term>Models, Chemical (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (antagonists & inhibitors)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Protein Disulfide Reductase (Glutathione) (MeSH)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Serine (genetics)</term>
<term>Swine (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>2-Iodo-acétamide (pharmacologie)</term>
<term>Acide ascorbique (métabolisme)</term>
<term>Acide déhydroascorbique (métabolisme)</term>
<term>Activation enzymatique (génétique)</term>
<term>Animaux (MeSH)</term>
<term>Antienzymes (pharmacologie)</term>
<term>Catalyse (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Cystéine (génétique)</term>
<term>Focalisation isoélectrique (MeSH)</term>
<term>Foie (enzymologie)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Glutathion (métabolisme)</term>
<term>Modèles chimiques (MeSH)</term>
<term>Oxidoreductases (antagonistes et inhibiteurs)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protein-disulfide reductase (glutathione) (MeSH)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Suidae (MeSH)</term>
<term>Sérine (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Oxidoreductases</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cysteine</term>
<term>Oxidoreductases</term>
<term>Serine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ascorbic Acid</term>
<term>Dehydroascorbic Acid</term>
<term>Glutathione</term>
<term>Oxidoreductases</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Oxidoreductases</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Foie</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Liver</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Enzyme Activation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Cystéine</term>
<term>Oxidoreductases</term>
<term>Sérine</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide ascorbique</term>
<term>Acide déhydroascorbique</term>
<term>Glutathion</term>
<term>Oxidoreductases</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>2-Iodo-acétamide</term>
<term>Antienzymes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Enzyme Inhibitors</term>
<term>Iodoacetamide</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Catalysis</term>
<term>Glutaredoxins</term>
<term>Isoelectric Focusing</term>
<term>Kinetics</term>
<term>Models, Chemical</term>
<term>Oxidation-Reduction</term>
<term>Protein Disulfide Reductase (Glutathione)</term>
<term>Swine</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Catalyse</term>
<term>Cinétique</term>
<term>Focalisation isoélectrique</term>
<term>Glutarédoxines</term>
<term>Modèles chimiques</term>
<term>Oxydoréduction</term>
<term>Protein-disulfide reductase (glutathione)</term>
<term>Suidae</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The catalytic mechanism of the glutathione (GSH)-dependent dehydroascorbic acid (DHA) reductase activity of recombinant pig liver thioltransferase (RPLTT) was investigated. RPLTT and the C25S mutant protein had equivalent specificity constants (kcat/Km) for both DHA and GSH. Iodoacetamide (IAM) inactivated the DHA reductase activities of RPLTT and C25S, confirming the essential role of cysteine in the reaction mechanism. When preincubated with DHA, RPLTT but not C25S was protected against IAM inactivation, suggesting that RPLTT has the ability to chemically reduce DHA forming ascorbic acid (AA) and the intramolecular disulfide form of the enzyme. Electrochemical detection of AA demonstrated the ability of both reduced RPLTT and C25S to chemically reduce DHA to AA in the absence of GSH. However, RPLTT had an initial rate of DHA reduction which was 4-fold greater than that of C25S, and after 10 min, RPLTT resulted in an AA concentration 11-fold greater than that of C25S. Isoelectric focusing analysis revealed that the product of reaction of reduced RPLTT but not C25S with DHA was consistent with the oxidized form of the enzyme. This result suggested that even though both RPLTT and the C25S mutant had equivalent specificity constants for DHA and GSH, they may have different catalytic mechanisms. On the basis of the experimental results, a catalytic mechanism for the DHA reductase activity of RPLTT is proposed. This is the first description of a catalytic mechanism of a glutathione:dehydroascorbate oxidoreductase (EC 1.8.5.1).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">9890907</PMID>
<DateCompleted>
<Year>1999</Year>
<Month>02</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>38</Volume>
<Issue>1</Issue>
<PubDate>
<Year>1999</Year>
<Month>Jan</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>The catalytic mechanism of the glutathione-dependent dehydroascorbate reductase activity of thioltransferase (glutaredoxin).</ArticleTitle>
<Pagination>
<MedlinePgn>268-74</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The catalytic mechanism of the glutathione (GSH)-dependent dehydroascorbic acid (DHA) reductase activity of recombinant pig liver thioltransferase (RPLTT) was investigated. RPLTT and the C25S mutant protein had equivalent specificity constants (kcat/Km) for both DHA and GSH. Iodoacetamide (IAM) inactivated the DHA reductase activities of RPLTT and C25S, confirming the essential role of cysteine in the reaction mechanism. When preincubated with DHA, RPLTT but not C25S was protected against IAM inactivation, suggesting that RPLTT has the ability to chemically reduce DHA forming ascorbic acid (AA) and the intramolecular disulfide form of the enzyme. Electrochemical detection of AA demonstrated the ability of both reduced RPLTT and C25S to chemically reduce DHA to AA in the absence of GSH. However, RPLTT had an initial rate of DHA reduction which was 4-fold greater than that of C25S, and after 10 min, RPLTT resulted in an AA concentration 11-fold greater than that of C25S. Isoelectric focusing analysis revealed that the product of reaction of reduced RPLTT but not C25S with DHA was consistent with the oxidized form of the enzyme. This result suggested that even though both RPLTT and the C25S mutant had equivalent specificity constants for DHA and GSH, they may have different catalytic mechanisms. On the basis of the experimental results, a catalytic mechanism for the DHA reductase activity of RPLTT is proposed. This is the first description of a catalytic mechanism of a glutathione:dehydroascorbate oxidoreductase (EC 1.8.5.1).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Washburn</LastName>
<ForeName>M P</ForeName>
<Initials>MP</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Michigan State University, East Lansing 48824, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wells</LastName>
<ForeName>W W</ForeName>
<Initials>WW</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>DK-44456</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>ES-7255</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004791">Enzyme Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>452VLY9402</RegistryNumber>
<NameOfSubstance UI="D012694">Serine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.4.2</RegistryNumber>
<NameOfSubstance UI="D011490">Protein Disulfide Reductase (Glutathione)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.5.1</RegistryNumber>
<NameOfSubstance UI="C020666">glutathione dehydrogenase (ascorbate)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PQ6CK8PD0R</RegistryNumber>
<NameOfSubstance UI="D001205">Ascorbic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Y2Z3ZTP9UM</RegistryNumber>
<NameOfSubstance UI="D003683">Dehydroascorbic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ZRH8M27S79</RegistryNumber>
<NameOfSubstance UI="D007460">Iodoacetamide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001205" MajorTopicYN="N">Ascorbic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003683" MajorTopicYN="N">Dehydroascorbic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004791" MajorTopicYN="N">Enzyme Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007460" MajorTopicYN="N">Iodoacetamide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007525" MajorTopicYN="N">Isoelectric Focusing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008099" MajorTopicYN="N">Liver</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="N">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011490" MajorTopicYN="Y">Protein Disulfide Reductase (Glutathione)</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012694" MajorTopicYN="N">Serine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1999</Year>
<Month>1</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1999</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1999</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">9890907</ArticleId>
<ArticleId IdType="doi">10.1021/bi980480v</ArticleId>
<ArticleId IdType="pii">bi980480v</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
<settlement>
<li>East Lansing</li>
</settlement>
<orgName>
<li>Université d'État du Michigan</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Wells, W W" sort="Wells, W W" uniqKey="Wells W" first="W W" last="Wells">W W Wells</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Washburn, M P" sort="Washburn, M P" uniqKey="Washburn M" first="M P" last="Washburn">M P Washburn</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001088 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001088 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:9890907
   |texte=   The catalytic mechanism of the glutathione-dependent dehydroascorbate reductase activity of thioltransferase (glutaredoxin).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:9890907" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020